Dynamic Neural Clustering
نویسنده
چکیده
منابع مشابه
An Approach for Invariant Clustering and Recognition in Dynamic Environment
An approach for invariant clustering and recognition of objects (situation) in dynamic environment is proposed. This approach is based on the combination of clustering by using unsupervised neural network (in particular ART-2) and preprocessing of sensor information by using forward multilayer perceptron (MLP) with error back propagation (EBP) which supervised by clustering neural network. Usin...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملWWW-Newsgroup-Document Clustering by Means of Dynamic Self-organizing Neural Networks
The paper presents a clustering technique based on dynamic self-organizing neural networks and its application to a large-scale and highly multidimensional WWW-newsgroup-document clustering problem. The collection of 19 997 documents (e-mail messages of different Usenet-News newsgroups) available at WWW server of the School of Computer Science, Carnegie Mellon University (www.cs.cmu.edu/ TextLe...
متن کاملTo Enhance Reliability of Dynamic Clustering Using Self Learning Technique: A Review
The wireless sensor network is one of the types of Ad hoc network. Any sensor node can join or leave the network when they want i.e. self-configuring in nature. There is no central controller is present in wireless sensor network. Wireless sensor nodes are responsible for data routing in the network. Wireless sensor network is used to monitor the environmental conditions like, pressure, tempera...
متن کاملA Comparative Study of two Self Organising and Structurally Adaptive Dynamic Neural Tree Networks
This paper examines the performance of Dynamic Neural Tree Networks (DNTNs) which perform hierarchical clustering on unlabelled data. DNTNs are a form of competitive learning neural networks where the competitive neurons are created dynamically, forming a tree configuration which represents the structure inherent in the data set. Two such models have been produced independently by Racz and Klot...
متن کاملA Dynamic Adaptive Self-Organising Hybrid Model for Text Clustering
Clustering by document concepts is a powerful way of retrieving information from a large number of documents. This task in general does not make any assumption on the data distribution. In this paper, for this task we propose a new competitive Self-Organising (SOM) model, namely the Dynamic Adaptive Self-Organising Hybrid model (DASH). The features of DASH are a dynamic structure, hierarchical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995